

Taiwan EEW Group

- ☐ Prof. Yih-Min Wu (National Taiwan University)
- □ Prof. Ting-Li Lin (National Cheng-Kung University)
- ☐ Prof. Tai-Lin Chin (National Taiwan University of Science and Technology)
- □ Drs. Nai-Chi Hsiao (Central Weather Bureau) Chien-Hsin Chang (CWB)
- Mr. Da-Yi Chen (NTU, CWB), Mr. Chih-Yih Hsieh (NTU)
- Sanlien Technology Corp.

- ☐ Background of EEW
- ☐ Present EEW

☐ Proposed EEW (time?)

Earthquake Early Warning and Rapid Reporting

Seismic risk reduction

Physical basis and assumption for EEW

- Strong ground shaking is caused by shear (S) and the following surface waves, which travel at the speed slower than the primary (P) waves. (Crustal $P \sim 6.5 \text{ km/s}$ $S \sim 3.5 \text{ km/s}$, 13s per 100 km)
- Seismic waves travel much slower than EM signals transmitted by telephone or radio. (100 s vs. 400 km / 300,000 km/s = 0.0013 s)

Assumption: The final magnitude of an earthquake is partially controlled by the initiation process within the first seconds of rupturing.

Earthquake early warning (EEW)

- □ Warning ahead of the arrival of strong ground shaking
- □ Rapid estimate of earthquake parameters
- ☐ Initiate emergency responses

EEW is a practical, effective approach to seismic risk mitigation.

Present EEWS of Central Weather Bureau (CWB)

Motivation in Taiwan

Td: data recording time Tpr: data processing time Tr: event reporting time

Ts: S-wave travel time Tw: early-warning time

Earthquake early warning (EEW)

Magnitude estimation

Regional (front-detection)

- M_{L10} method (Wu et al., 1998)
 currently used by CWB
- Mpd: attenuation of Pd (Wu and Zhao, 2006) proposed by CWB

On-site

• Period terms: τ_C (Kanamori, 2005), τ_p^{max} (Allen and Kanamori, 2003)

currently used by CWB and southern California

Rapid Earthquake Information Release System (RTD)

Accelerometer (A900):

- ~ 100 stations
- 20km averaged spacing
- ☐ 16 bits resolution
- ± 29 Max. amplitude

Telemetry:

- Real-time data stream (RTD)
- 4.8K dedicated telephone and T1 lines
- Sampling rate 50 sps

Processing platform:

Windows-based workstation

[Wu et al., 1997; Hsiao et al., 2009]

Virtual sub-network approach

□ Rationale: Earthquake location and magnitude are mostly determined by stations close to the earthquake (Wu and Teng, 2002).

Performances for VSN

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Year

20

13

Regional warning v.s. onsite warning

There is no warning time for VSN method within the distance 70 km from epicenter.

T_c & P_d Methods

 T_c average period parameter of the initial three seconds P waves

 P_d 0.075Hz high pass peak displacement amplitude of the initial three seconds P waves

Earthquake size could be determined by T_c!

Wu and Kanamori, 2008

PGV could be predicted by Pd and then Shaking Intensity could be predicted!

Wu and Kanamori,

Example: The 2010 Jiasian earthquake

- \square Inland earthquake of Mw = 6.0 and $M_L = 6.4$
- □ ~20 km in focal depth ~40 km to the cities
- □ Rupture direction mainly pointed to the urban areas

Virtual Sub-Network, VSN method

Virtual Sub-Network, VSN method

Process times

VSN: 27 s RTD: 48 s

Magnitudes

VSN: 6.33 ±0.60 RTD: 6.26 ±0.44

Prototype EEWS in CWB by Hsiao et al., 2011

☐ Central Weather Bureau Seismographic Network (CWBSN)

Seismograph:

- Short period (picking)
- Strong-motion
- · Broadband

Communication:

IP-based network

Processing platform:

Earthworm system (USGS)

Prototype EEWS in CWB by Hsiao et al., 2010

CWBSN + Mpd

 \square M_{Pd}: (Wu and Zhao, 2006)

the 1999 Mw7.6 Chi-Chi earthquake

Chen et al., 2011

Proposed EEW and RR methods

Regional

- ☐ Magnitude estimation (I): Strong ground-motion attenuation relationship (Lin and Wu, 2010a)
- \square Magnitude estimation (II): PGA-contour enclosed area (Lin and Wu, 2010b)
- ☐ Magnitude estimation (III): Pd-contour enclosed area (Lin and Wu, 2011c)
- ☐ Magnitude estimation (IV): Total effective energy magnitude (Lin and Wu, 2012)

On-site

☐ Faster short-distance EEW (Wu et al., 2011a)

Magnitude estimation (I): Strong ground-motion attenuation relationship

 $\log_{10} PGA = -0.395 \log_{10}(r) + 0.125M + 1.979 \pm 0.161$

- \square Mpga = 5.8± 0.17
- □ 30 stations < 40 km

Magnitude estimation (II): PGA-contour encircled area

$$M_W = a \log A + b$$

☐ For a particular value of PGA contour, larger earthquake (M) will have a larger contour-enclosed area (A).

(Teng et al., 1997)

Magnitude estimation (II): PGA-contour encircled area

Magnitude estimation (III): Pd-contour encircled area

22°N

- O Early portion of P wave
- O Faster process time
- O Might be less accurate

$$M_{Pd-A} = 1.207 \log_{10}(A) + 0.651 Pd + 1.566 \pm 0.18$$

□ 2010 Jiasian earthquake

$$\sqrt{Es} = \int_{T_p}^{T_e} \sqrt{V^2 + N^2 + E^2} dt$$

$$\log(\sqrt{Es}) = A + B \cdot M_W + C \cdot R + D \cdot \log(R)$$

: NIED K-NET seismic network.

: Epicenters of the 17 crustal earthquake events

Black error bar: using data of the M_w = 9.0 2011 Tohoku earthquake Gray error bar: without using data of the M_w = 9.0 2011 Tohoku earthquake

On site: Faster short-distance EEW

The 2010 Jiasian earthquake demonstrates the vital need for the short-distance EEW.

Faster short-distance EEW

Derailment of the Taiwan High Speed Rail, THSR

Faster short-distance EEW

Relate early portion of the filtered vertical displacement to PGA

$$\log(PGV) = 0.920\log(Pd) + 1.642$$

$$log(PGA) = 0.595 + 1.069 log(PGV)$$

Faster short-distance EEW

- □ A threshold value of 0.35 cm for the filtered vertical displacement.
- \square If exceeds, ~ 80% of the warning sites will have PGA larger than 80 gal.
- \square Warning time = time (PGA > 80 gal) time (Displacement > 0.35 cm)

Next step in next years

- In next two years, over 400 sets Palert will be installed throughout the whole Taiwan region (three times denser).
- Real-time shaking map for rapid reporting purpose by using Palert network.
- Quick and Potable aftershock EEW monitoring
- Local EEW Array (Hybrid onsite and regional types)

121° 120° **Palert** 25° 24° 23° 22 121 120

Palert Seismic Network

 A total of 280 as of 2012/12